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Homogeneity of turbulence generated by static grids is investigated with the help of
hot-wire measurements in a wind-tunnel and direct numerical simulations based on
the Lattice Bolztmann method. It is shown experimentally that Reynolds stresses and
their anisotropy do not become homogeneous downstream of the grid, independent of
the mesh Reynolds number for a grid porosity of 64 %, which is higher than the lowest
porosities suggested in the literature to realize homogeneous turbulence downstream
of the grid. In order to validate the experimental observations and elucidate possible
reasons for the inhomogeneity, direct numerical simulations have been performed
over a wide range of grid porosity at a constant mesh Reynolds number. It is found
from the simulations that the turbulence wake behind the symmetric grids is only
homogeneous in its mean velocity but is inhomogeneous when turbulence quantities
are considered, whereas the mean velocity field becomes inhomogeneous in the wake
of a slightly non-uniform grid. The simulations are further analysed by evaluating
the terms in the transport equation of the kinetic energy of turbulence to provide
an explanation for the persistence of the inhomogeneity of Reynolds stresses far
downstream of the grid. It is shown that the early homogenization of the mean
velocity field hinders the homogenization of the turbulence field.

1. Introduction
Grid-generated turbulent flows have been the subject of numerous turbulence

investigations due to their statistical properties, among them the invariance of all
statistical moments to translation, i.e. its presumed homogeneity. Owing to the
translational invariance of homogeneous turbulence, decay processes in undistorted
flows and the effects of mean velocity distortion on this kind of turbulent flows
have constituted the framework of understanding and modelling of turbulent flow
phenomena. In experimental investigations, homogeneous turbulence has commonly
been produced by static-grid structures. The generated turbulence is not spatially
homogeneous in the flow direction, because it decays in this direction or is modified
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under the influence of constant mean velocity gradient, i.e. mean velocity distortion.
However, the changes in the flow direction are treated as changes in time for a
Lagrangian fluid element using Taylor’s frozen turbulence assumption (see for example
Batchelor 1953).

The research work of Taylor (1935a, 1937, 1938), von Kármán (1937) and von
Kármán & Howarth (1938) represents pioneering studies investigating homogeneous
and nearly isotropic turbulence. Batchelor & Townsend (1948a, 1948b) showed that the
decay of nearly isotropic grid-generated turbulence is composed of initial, transition
and final periods. Batchelor & Townsend (1949) investigated the spectrum of decaying
nearly isotropic grid turbulence to determine the ranges of wavenumbers in which
the small-scale eddies are in equilibrium as proposed by Kolmogorov (1941a, 1941b).
Comte-Bellot & Corrsin (1966, 1971) produced turbulence with improved isotropy
by slightly contracting the grid-generated turbulence. Their investigations revealed
that the normal turbulent stresses behind a static grid have a power-law decay in
the initial and the transition periods. The coefficients of the power-law decay were
later investigated by many researchers, e.g. Naudascher & Farell (1970), Mohamed &
Larue (1990), and more recently Lavoie, Djenidi & Antonia (2007) and Mazellier &
Vassilicos (2008).

The effects of the fundamental types of distortions on homogeneous turbulent
flows, i.e. strain, shear and rotation, constituted a central area of turbulence research
which was expected to reveal the interaction between the mean and the fluctuating
motion. The first investigations date back to Prandtl (1932, 1933) and Taylor (1935b),
both of whom studied the effect of wind-tunnel contraction on the free stream
turbulence. Townsend (1954) systematically investigated the effect of irrotational
uniform distortion without streamwise strain on homogeneous turbulence. Tucker &
Reynolds (1968) and Reynolds & Tucker (1975) extended these investigations on
irrotational distortion of homogeneous turbulence. They studied a range of distortion
scenarios: plane strain, symmetric contraction and flattening contraction. The studies
of Uberoi (1956), Mills & Corrsin (1959), Tan-atichat, Nagib, & Drubka (1980),
Warhaft (1980) and Sjögren & Johansson (1998) also investigated the effect of
axisymmetric contraction applied to nearly isotropic turbulence generated by static
grids. Gence & Mathieu (1979) considered two successive plain strains without
streamwise acceleration of the velocity.

The relaxation of anisotropic homogeneous turbulence is another important type
of homogeneous turbulence. The turbulence was made to be anisotropic by either
axisymmetric strain or plain strain. After straining, the mean velocity distortion
was switched off, so that the effect of viscous dissipation and the slow part of the
pressure-strain correlations of anisotropic turbulent fluctuations could be investigated
isolated from the mean flow distortion. Uberoi (1956, 1957) and Mills & Corrsin
(1959) were the first to observe that the anisotropic turbulence, which was generated
by an axisymmetric contracting nozzle, tended to become isotropic while it was
decaying. Therefore, this behaviour of turbulence is called the ‘return-to-isotropy’.
The anisotropic flows generated by plain strain were experimentally investigated
by Tucker & Reynolds (1968), and more recently by Gence & Mathieu (1980). In
general, these experimental studies showed that the decrease in anisotropy is essentially
controlled by the type of anisotropy generated. Warhaft (1980) and Choi & Lumley
(2001) also carried out investigations on the return-to-isotropy problem.

Homogeneous pure shear turbulence and pure rotation turbulence have also been
studied by many researchers. Among the homogeneous turbulent flows, pure shear
flows are the most relevant to the turbulent boundary layer flows. Hinze (1975,



Homogeneity of turbulence generated by static-grid structures 475

chapter 4) gave a good insight into homogeneous shear flows. More recently, Shen &
Warhaft (2000, 2002), Warhaft & Shen (2002) and Ferchichi & Tavoularis (2000)
questioned the local isotropy of turbulence formulated by Kolmogorov (1941a) in
pure shear turbulence. In contrast to the postulate of local isotropy, they showed
that the small-scale turbulence can be anisotropic even at high turbulence Reynolds
numbers and large-scale structures do not stop interacting with small-scale structures
with increasing turbulence Reynolds numbers. The review of Gence (1983) or the
book of Sagaut & Cambon (2008) on homogeneous turbulence should be referred to
for a more complete overview of homogeneous turbulence.

In order to ensure the homogeneity of the turbulent flow field in the wake of a grid,
Corrsin (1963) suggested three conditions that should be satisfied. First, the porosity
of the grid, which is the ratio of open to total area of the grid structure, should
be large enough to prevent coalescing jets and large-scale instability downstream
of the grid. Corrsin (1944) studied unstable jet coalescence downstream of two-
dimensional jets. Based on his observations and the available literature, he suggested
the existence of a critical porosity value above which unstable jet coalescence does
not occur. von Bohl (1940) revealed that critical porosity might lie between 54 %
and 63 %. Bradshaw (1964, 1965) suggested that porosity should be larger than
57 % to avoid instabilities and Tan-atichat & Nagib (1982) suggested 60 % and 70 %
for grids and screens, respectively. Second, the diameter or the height of the flow
duct, say D, must be much larger than the length scale of the energy-containing
eddies, which is of the same order as the mesh size of the grid (M), i.e. D/M � 1.
In other words, the larger the ratio D/M , the smaller is the effect of the walls on
the measured data to be expected. Third, the measurements should be taken far
downstream, since the turbulence becomes homogeneous only after at least 40 mesh
sizes downstream of the grid. Lack of one or more of these conditions might lead to
inhomogeneity and, therefore, the resultant data must not be compared with the laws
deduced for homogeneous turbulence. In other words, after fulfilling these conditions,
measurements of undistorted and distorted grid-generated turbulence were expected
to reflect the properties of homogeneous turbulence.

Most of the above-mentioned studies have satisfied these conditions. However,
to the best of the authors’ knowledge, there have been only a few studies that
directly investigated the homogeneity of the grid-generated turbulence. Batchelor &
Townsend (1948a, 1948b) and Batchelor & Stewart (1950) recognized the lack of
homogeneity for very fine grids (grids of 1/4 inch mesh size). Grant & Nisbet (1957)
showed that the inhomogeneity of Reynolds stresses can reach up to ±15 % at
x1/M = 80 for a mesh size of 1/4 inch and ±6 % at x1/M = 30 for a 2 inch mesh
size. All their grids had a porosity of 70 %, i.e. much larger than the value suggested
by Bradshaw (1964, 1965). Moreover, their transverse profile measurements in the
wake of the grids showed wavy r.m.s. values of turbulent velocity fluctuations. Their
investigations revealed that, with increasing mesh size, the inhomogeneity dropped.
Moreover, they showed that the location of the measurement axis along the flow
direction has a drastic effect on the decay of grid turbulence. In detailed studies on
turbulence manipulators, Loehrke & Nagib (1972) and Tan-atichat & Nagib (1982)
also measured standing wavy structures. In a study by Liu, Ting & Rankin (2004),
the inhomogeneity of the r.m.s. of velocity fluctuations increased in the streamwise
direction, reaching up to 30 % at x1/M = 40 for perforated plates of 65 % porosity.
They showed that the higher the solidity, the greater is the inhomogeneity of the r.m.s.
of velocity fluctuations. The literature shows that although grid-generated turbulence
was utilized in many experimental turbulence investigations, its homogeneity did



476 Ö. Ertunç, N. Özyılmaz, H. Lienhart, F. Durst and K. Beronov

ReM/Porosity 53% 64% 72% 82%

1400 DNS-LBGK DNS-LBGK DNS-LBGKa,b DNS-LBGK
(17< Reλ < 11) (15 < Reλ < 10) (14< Reλ < 9) (13 < Reλ < 7)

4000 EXP. (34< Reλ < 18)
5333 EXP. (50< Reλ < 24)
8000 EXP. (74< Reλ < 36)

Table 1. The mesh Reynolds number ReM , turbulence Reynolds number Reλ and porosity in
the experimental and numerical simulations. The Reλ ranges in experimental cases (EXP.) are
given for 16 � x1/M � 110 and in numerical simulations they are given for 10 � x1/M � 50.
aAn extra simulation with a computational domain of size 2400 × 400 × 400 was made.
bAn extra simulation with a non-uniform grid was made.

not attract enough interest and, consequently, was mostly accepted as an ad hoc
assumption.

Recently, Ertunç (2007) conducted detailed hot-wire measurements in the wake of
a grid of 64 % porosity at different Reynolds numbers. He found that turbulence
generated by punched grids showed wavy transverse profiles of Reynolds stresses
far downstream of the grid (x1/M > 30), similar to those observed by Grant &
Nisbet (1957), despite the fact that the porosity of the grid employed was higher
than those suggested in the literature (Bradshaw 1964, 1965; Tan-atichat & Nagib
1982). As the grid structures employed in those experiments had a 1.3 % standard
deviation of porosity, i.e. they were slightly non-uniform, it was not clear whether
the non-uniformity caused the observed inhomogeneity in Reynolds stresses. Hence
these findings triggered our efforts to conduct direct numerical simulations (DNS)
of grid-generated turbulence by using the standard Lattice Boltzmann BGK method
(LBGK). The present paper summarizes these results and carries out a comparison
with the experiments.

The main objectives of this study were to determine the extent of homogeneity in
the flow field, the dependence of homogeneity on the grid Reynolds number and the
porosity of the grid structure and its non-uniformity. The research also considers the
reasons for the persistence of the Reynolds stress inhomogeneity far downstream of
the grid. Hence the investigations presented here cover grid porosity ranging from
53 to 83 % and grid Reynolds numbers from 1400 to 8000, as listed in table 1.
The Reynolds number effect on the homogeneity of turbulence quantities is shown
via measurements, and DNS is employed to show the effects of porosity and grid
non-uniformity and to analyse the time-averaged dynamics of turbulence behind the
static grids.

2. Grid-Generated turbulence in the wind tunnel
2.1. Flow facility and instrumentation

The effect of the grid Reynolds number on the homogeneity of grid-generated
turbulence was investigated experimentally. For the measurements of turbulence
downstream of a static-grid structure, the closed-loop, low-speed wind tunnel at
LSTM-Erlangen was employed (figure 1). The open test section of the wind tunnel
was almost completely closed to prevent the generation of free shear turbulence at
the edges of the flow in the test section and its influence on the measurements. The
closed part of the test section was 1.8 m in width, 1.4 m in height and 2 m in length.
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Figure 1. The closed-loop wind tunnel of LSTM-Erlangen.

1.4 m

Pitot-static tube

Static grid (M = 10 mm)

Arc-shaped traversing

Hot-wire probes

1.8 m
R

2.0 m

Figure 2. The test section of the wind tunnel and the installed measurement system.

In figure 2, the test section, the static-grid structure, the hot-wire probe and other
measurement equipment employed are shown. The ratio of any one of the cross-
sectional dimensions of the test section to the mesh size was much larger than 1.
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A square punched grid structure with a 10 mm mesh size, M , with 64 % porosity was
installed at the exit of the contraction. The standard deviation of the bar width of
the grid structure was measured to be 2.4 %, which corresponds to a 1.3 % standard
deviation of the porosities of cells of the grid structure. In accordance with the
above-mentioned studies, the mesh size is defined as the distance from the centre of
one rod to the next. The selected mesh size allowed measurements to be conducted
at distances more than 100 M downstream of the grid in this test section. The grid
Reynolds number,

ReM =
UmM

ν
, (2.1)

was controlled by setting the mean flow speed in the test section, Um. In this way,
the effects of grid Reynolds number on the inhomogeneity of measured turbulence
quantities could be checked. The turbulence Reynolds number based on Taylor length
scale and longitudinal velocity fluctuation

(
Reλ =

√
u1u1λgν

)
remained below 100.

Hence, according to Mydlarski & Warhaft (1996), generated turbulence can be
accepted as weak turbulence (the turbulence is called strong for Reλ � 200). Reλ
drops in the flow direction. The range of Reλ for each flow case is given in table 1.
The details of scale and corresponding Reλ development in the experiments were
documented by Ertunç (2007).

The wind tunnel was equipped with temperature control, which kept the flow at a
given temperature within ±0.5 K. The maximum operating speed in the test section
could be set up to 60 m s−1. Because of the large drag force applied on the grid at
high velocities and the resulting deformation of the grid, only velocities up to 12 m s−1

were used.
To conduct velocity measurements, a DISA 56C01 hot-wire anemometer unit with

four DISA CT56C17 constant-temperature hot-wire bridges was employed. Two
single normal wire (SN-wire) and one X-wire probes were used. The probes were
mounted on an arc-shaped traversing system enabling the angle between the probe
and the flow to be varied between 25◦ and −25◦ in 5◦ steps. This system was
used to perform angle calibration of the X-wire probe. As can be seen in figure 2,
the arc-shaped traversing together with hot-wire probes were installed on a three-
dimensional traversing system. This probe configuration was selected to account for
the irrotational velocity fluctuations appearing as flow disturbances. They become
visible when the turbulence level drops below 0.1 %. Since these kinds of fluctuations
are global in nature, i.e. they happen to occur in the whole test section, cross-
correlation of two SN-wires separated sufficiently from each other is a measure of
those fluctuations. Knowing the irrotational fluctuations, u1u1 values were corrected
simply by subtracting the irrotational contribution. The theoretical background of
the design of this probe system and the necessary measurement and data processing
methods were given in detail by Ertunç (2007) and Ertunç & Durst (2008). As the
above-mentioned flow rate fluctuations occur simultaneously everywhere, no influence
on the homogeneity of the turbulence field was observed.

The normal wires were 0.8 and 1.0 mm in length and the two inclined wires of
the X-wire probe were 1.2 mm in length. The distance between the inclined wires of
the X-wire probe was 1.0 mm and their geometric inclinations were 43◦ and 44◦ with
respect to the probe axis. All the hot wires employed were 5 µm in diameter. In order
to minimize the electronic noise, the gain and high-frequency filter settings of the
hot-wire bridge amplifier were chosen to be 1. With these settings, the anemometer
had a cut-off frequency of 22 kHz at a flow speed of 12 m s−1. The signals from the
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anemometers were filtered through low-pass filters integrated in the back-up amplifiers
with their upper frequency limit set at 11 kHz. This upper frequency limit was much
higher than the expected highest frequencies of the turbulent velocity fluctuations.
The highest frequency was estimated from order of magnitude considerations to be
8 kHz at the maximum.

The calibration of the hot wires in the wind tunnel was performed with the
reference velocity obtained from a Pitot-static tube installed on the traversing system
in the vicinity of the hot-wire probes. A Setra differential pressure transducer was
employed for the measurements with the Pitot-static tube. During the calibration
and measurements, the temperature of the flow was measured with a PT100
temperature sensor in order to correct the measured data for temperature drift.
For the angle calibration of the X-wire probe, the effective angle method suggested
by Bradshaw (1971) was applied. As at the same location the longitudinal velocity
was measured with the Pitot-static tube, we checked the accuracy of the calibration
with the longitudinal velocity component. The transverse component was essentially
zero. During the measurements, no substantial deviation of the streamwise velocity
measured by the hot-wire probes from that measured by the Pitot-static tube was
observed.

The filtered hot-wire signals and the pressure transducer and temperature signals
were acquired via a 16-bit A/D converter (NI 6052E DAQ card) installed in a personal
computer. The data were stored on hard disks for post-processing. All the signals
were grounded only over the computer in order to prevent ground loop disturbances
on the measured signal. During the measurements, a resolution of 0.076 mV was
achieved with the A/D converter. The minimum r.m.s. voltage reading of an analog
r.m.s. meter with turbulence-free flow was around 0.2 mV. Hence, the resolution of the
data acquisition system permitted low-turbulence intensity measurements with high
digitalization accuracy.

The sampling rate for each set of measurements, except when the spectra and the
two-point correlation functions were measured, was chosen such that only statistically
uncorrelated data were sampled. For this purpose, the integral time scales, τ , were
estimated via the autocorrelation function of the measured velocity fluctuations. For
every measurement case, the sampling frequency was chosen such that they were
less than 1/2τ to ensure zero eddy turbulence correlation between two consecutive
data. The number of data for each measurement point was 50 000, which resulted in
less than 1 % statistical uncertainty with 99 % confidence for the mean velocity and
around 1.2 % statistical uncertainty with 95 % confidence for the mean square of the
turbulent velocity fluctuations.

The hot-wire measurements comprise scans of a plane, which is perpendicular to
the grid, located about the centre of the test section and extends 1060 mm in the
streamwise direction and 50 mm in the transverse direction. The transverse resolution
of the scan was 1 mm. Since such a measurement field corresponds to a long narrow
strip, the measured field could only be visualized by reducing the aspect ratio in the
plots.

2.2. Analyzed quantities

The scanned planes consist of Nx1
points in the flow direction and Nx2

points in the
transverse direction, such that the spatial resolutions of the scan in the two directions
are �x1 and �x2.

In order to visualize the homogeneity of any one of the measured or simulated
mean quantities, say H , in the scanned plane, the inhomogeneity parameter IH at



480 Ö. Ertunç, N. Özyılmaz, H. Lienhart, F. Durst and K. Beronov

x1 = i�x1 and x2 = j�x2 is defined as

IH (x1, x2) =

⎡
⎢⎢⎢⎢⎢⎢⎣

H (i�x1, j�x2) − 1

Nx2

Nx2∑
k=1

H (i�x1, k�x2)

∣∣∣∣∣∣
1

Nx2

Nx2∑
k=1

H (i�x1, k�x2)

∣∣∣∣∣∣

⎤
⎥⎥⎥⎥⎥⎥⎦

× 100, (2.2)

which is the percentage deviation of the variable H (x1, x2) from the absolute value of
its average value calculated along a line having x1 = constant. The inhomogeneities
of the mean longitudinal velocity IU1

and the Reynolds stresses Iu1u1
and Iu2u2

are
analysed in the following in more detail. Anisotropies of Reynolds stresses, which are
non-dimensional parameters, are of vital importance for modelling and predictions.
Therefore, the field of stress anisotropy and its inhomogeneity is visualized by using
the anisotropy of the longitudinal normal Reynolds stress a11, which is

a11 =
u1u1

q2
− 1

3
, (2.3)

where q2 = u1u1 + u2u2 + u3u3 and can be approximated by q2 ≈ u1u1 + 2u2u2 in
nearly homogeneous and axisymmetric turbulence, which should be the case when
turbulence is generated with uniform and symmetric grids in all transverse directions.

In an ideal homogeneous turbulence, distribution functions of any velocity
fluctuation f , for instance streamwise and transverse velocity fluctuations, should
show a symmetry around their zero mean and should have a normal distribution. The
symmetry is monitored through the skewness factor

Sf = f 3/f ′3. (2.4)

For a perfect symmetric distribution, the skewness factor should be zero. The flatness
factor,

Ff = f 4/f ′4, (2.5)

is a measure of the normal distribution and it should be 3 for a perfect normal
distribution. Within the analysis of each case, fields of the skewness and flatness
factors of velocity fluctuations Su1

, Su2
, Fu1

and Fu2
are presented.

2.3. Experimental results

The inhomogeneity of the mean velocity field at mesh Reynolds number (ReM ) = 8000
is shown in figure 3. The red colour indicates regions of higher velocity and the blue
colour indicates regions of lower mean velocity than the mean of the mean velocity
along a line having x1 = constant. The locations of grid rods are depicted as black
bars on the vertical axis. It is obvious that the mean velocity decreases behind the
rods and increases in the open area between two rods. In the vicinity of the grid
x1/M < 10, inhomogeneity of the streamwise velocity is over ±10 %, but it decreases
to below ±2 % for x1/M > 15. IU1

levels to ±1 % for x1/M > 50. The inhomogeneity
of the normal stress u1u1 for different flow speeds, i.e. ReM = 4000, 5333 and 8000,
are shown in figure 4. Broadly seen are the regions having either positive or negative
deviations extending in the whole streamwise directions. These regions repeat in a
cyclic manner in the transverse direction, but not with a periodicity of mesh size M .
The total measuring time of one of these planes for one ReM was around three days.
Hence, it is really impressive to observe the standing regions of inhomogeneity behind
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Figure 3. Inhomogeneity of mean velocity field U 1(x, y) at the wake of the grid in the wind
tunnel having a porosity of 64 % at ReM = 8000.

the grid even after 100 mesh sizes and the persistence of these regions almost at the
same locations for all Reynolds numbers.

The inhomogeneity of u2u2 at ReM = 8000 is shown in figure 5. In the inhomogeneity
fields of stresses, traces of each grid rod can clearly be seen up to x1/M ≈ 12. These
regions correspond to the separated wake flow of the rods. Inhomogeneity of velocity
fluctuations behind the rods is positive for ReM = 5333 and 8000, whereas at the same
positions inhomogeneity of the mean velocity field takes negative values. In figures 4
and 5, positive regions coalesce with positive regions and vice versa for x1/M > 10,
so that wider strips of positive and negative regions occur, which further coalesce
with each other downstream of the grid. In three dimensions, the inhomogeneity field
can be imagined as being composed of continuously braiding positive and negative
strips. Downstream of the grid, the levels of inhomogeneities of the normal stresses
do not drop and fluctuate spatially between ±5 % and the inhomogeneity level of
off-diagonal stress fluctuates between ±50 %. It can be concluded that measurements
of normal stresses along any two lines with x2 = constant might deviate by ±5 %
from each other.

The anisotropy a11 field and its inhomogeneity Ia11
field are shown in figure 6. In the

flow direction, a11 has a tendency to drop (figure 6a). However, a11 decreases faster
close to the grid, and further downstream it levels to some value, which is dependent
on the grid Reynolds number and the measurement location. In the paper by Comte-
Bellot & Corrsin (1966), a11 took a maximum value of 0.143 and a minimum value
of 0.02 at x1/M ∼=20. In our experiments, the approximate values of a11 are 0.12 and
0.06, respectively, at the corresponding locations. Considering that these values are
dependent on the grid-type as shown by Comte-Bellot & Corrsin (1966) and also
dependent on the transverse location of the measurement probe as shown in figure 6,
the present data are within the range found in the literature. Ertunç (2007) showed
that regions with higher values of a11 in the vicinity of the grid become larger with
increase in grid Reynolds number. The inhomogeneity of a11 also becomes stronger
close to the grid and the negative and positive strips of inhomogeneity can also be
seen in figure 6(b) with deviations approaching ±20 % far downstream of the grid.
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Figure 4. Inhomogeneity of u1u1(x, y) field at the wake of the grid in the wind tunnel having
a porosity of 64 % for different grid velocities at (a) ReM = 4000, (b) 5333 and (c) 8000.

The skewness and flatness factors of u1 fluctuations and, particularly, u2 fluctuations
also show spatially inhomogeneous fields. Examples of these fields of u2 fluctuations
are presented in figure 7 for ReM = 8000. For x1/M > 12, the skewness factors take
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Figure 6. (a) a11 field and (b) its field of inhomogeneity at the wake of the grid in the wind
tunnel having a porosity of 64 % at ReM = 8000.

values ±0.1. In the detailed analysis of the measured data, Ertunç (2007) showed that
the spatial inhomogeneity of Fu2

close to the grid grows with increase in Reynolds
number. Further downstream of the grid, both flatness factors, Fu1

and Fu2
, have a
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tendency to be less than three and take values between 2.85 and 3.0. This shows that
large-amplitude fluctuations are less probable than expected for a normal distribution.
Nevertheless, when only the symmetry of the velocity fluctuation distribution and its
form are considered to be the criteria of homogeneity, measured skewness and flatness
values downstream of the grid give an impression that the flow field is homogeneous,
although there exists a spatial inhomogeneity of the measured mean quantities.

All the evaluated fields in the selected very small portion of the flow do not
possess full symmetry downstream of the grid structure in the transverse direction.
The turbulence is generated as a result of the highly unsteady outgoing jets. The
coalescence of these jets has an unstable nature, as was discussed earlier, and only
after averaging did the most probable locations of the coalescence become visible. The
resulting asymmetry in the inhomogeneity fields can be contributed to by the slight
non-uniformity (1.3 % in its porosity) of the grid structure. Owing to the random distri-
bution of this non-uniformity over the whole grid structure, similar asymmetry should
be expected in other downstream planes. Whether the observed inhomogeneity is solely
due to the non-uniform grid structure will be elucidated with the help of DNS in § 3.
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3. Numerical investigations
For the DNS investigations, the standard LBGK was employed. The main goals

of the simulations were, above all, to see whether the experimentally observed
inhomogeneities could be confirmed and to see whether the porosity of the grids
has an influence on the inhomogeneity. For this purpose, four porosities, 53 %, 64 %,
72 % and 82 %, were studied at a fixed mesh Reynolds number, ReM ≈ 1400 (table 1).
Furthermore, the effect of non-uniformity in the geometry of the grid structure was
investigated to determine whether the inhomogeneities observed in experiments are
caused by slight non-uniformities of grid structures.

In order to determine the effect of the size of the computational domain, an extra
simulation was conducted with an approximately six times larger domain for the
72 % porosity grid.

3.1. The numerical method

The origin of the Lattice Boltzmann equation (LBE), more specifically the Boltzmann
equation, is based on the kinetic theory, and it describes basically the evolution of
the velocity distribution function on a lattice in such a way that the macroscopic
fluid dynamics behaviour (Navier–Stokes equations) can be recovered by applying
the Chapman-Enskog expansion. In the absence of external forces, the general LBE
reads

fα(x + ξαδt , t + δt ) = fα(x, t) + Ωα(f ), (3.1)

where fα denotes the single-particle distributions, ξ is the microscopic velocity, α is the
direction of these discrete velocities and Ω is the collision integral. The macroscopic
quantities (density and velocity) are then given by

ρ =
∑

α

fα,

ρu =
∑

α

ξαfα.

⎫⎪⎬
⎪⎭ (3.2)

At each time step, the velocity distribution functions at each point are re-evaluated
based on three main processes: collision, propagation and bounce-back. The collision
operator, Ω , can be linearized either by using single-time relaxation or by multiple
relaxation parameters. Depending on this, two different methods of Lattice Boltzmann
calculations exist: single-time LBE (BGK) and multiple relaxation methods (MRT)
(see, for example, Wolf-Gladrow 2000; Succi 2001). The former method was employed
in the present study.

3.2. Computer code employed and computational details

For the computations in the present study, we employed a Lattice Boltzmann BGK
solver, known as the BEST code, which was developed at LSTM Erlangen. It
was parallelized by MPI standard and optimized for various cache- and vector-
based platforms, including the NEC-Sx8 series (Stuttgart HPC centre) and HLRB II
(Leibnitz HPC centre), where the presented calculations were carried out. This code
has been verified by various researchers for many different applications, ranging from
the investigations on plane channel flows at low-to-moderate Reynolds numbers
(Özyılmaz 2003; Lammers 2004) to the investigation of flows through complex
geometries, such as porous media and fixed-bed reactors (Zeiser et al. 2001; Freund
et al. 2003). In many studies, it was shown to be at least as accurate as and
more efficient than the traditional CFD methods (Breuer et al. 2000; Brenner et al.
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Figure 8. A view of the grid in the computational domain and the instantaneous streamwise
velocity field for the flow case with 53 % porosity.

2003; Wellein et al. 2006). Hence, it was an ideal candidate for further clarifications
regarding the (in)homogeneity of the turbulent quantities of grid-generated turbulence
at intermediate Reynolds numbers by DNS.

As mentioned previously, we conducted DNS for four different porosities, using
square rods. By keeping the mesh size the same (M = 40), the thickness of the rods
was changed to obtain the desired porosity. The applied obstacle can be inferred
from figure 8, where the instantaneous streamwise velocity component is visualized.
The mesh Reynolds number was fixed at ReM ≈ 1400. The flow was driven by a
constant pressure drop in the main flow direction. We applied periodic boundaries as
inlet/outlet boundary conditions, combining them with the ‘fringe region method’. The
latter was used to justify the application of periodic boundaries in the non-periodic
streamwise direction, as suggested first by Spalart (1988). The present simulations
were conducted based on the knowledge that the total number of points required for
a DNS in isotropic turbulence is proportional to Re11/4

L , if one would like to resolve
the smallest scales both in space and in time (Breuer 2001). Considering this relation,
around 2.88 × 106 points were required, for instance, to carry out simulations at
Reλ ≈ 25. Taking into account that the lateral extent (Lx2

= Lx3
) of the computational

domain must be larger than the length of the energy-containing eddies, which is of the
same order as the mesh size, M , in grid-generated turbulence, the final grid resolution
was chosen to be 2400×160×160 = 6.144×106, i.e. Lx2

/M = 4. As discussed below, we
checked the influence of the Lx2

/M ratio on the inhomogeneity of the mean velocity
component, using Lx2

/M =10. This study resulted in no significant differences, hence
we applied the lower grid resolution for the study. Another way to check the quality
of the grid resolution is to examine the Kolmogorov length scale obtained from
the simulations. In figure 9, the ratio between the spatial resolution of the grid (∆)
and the Kolmogorov length scale (lk) is provided. When interpreting these results,
one should keep in mind that the Kolmogorov length scale was derived based on
an order-of-magnitude consideration, hence, to describe the spatial resolution of the
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Figure 9. Development of the ratio between the spatial resolution of the grid (∆) and the
Kolmogorov length scale (lk) in the streamwise direction for different porosities.

smallest scale a prefactor higher than one might be needed (Fröhlich 2006). As seen
in figure 9, in many of the investigated cases ∆/lk is less than five for the whole
streamwise extent and less than one for x1/M > 20. Therefore, the spatial resolution
of the present simulations was accepted as adequate enough for the current purposes.
It should be noted that in a previous Lattice Boltzmann simulation by Djenidi (2006),
a much lower grid resolution was employed for ReM = 1600.

3.3. Numerical results

The time averaging of the turbulent quantities to be discussed in this section was
carried out as follows: once the turbulence field was developed, the mean velocity
statistics were accumulated. After obtaining approximately 15 000 (tfinal ) independent
samples for the mean velocity components, samples for Reynolds stress components
were started to be collected, using the mean velocity fields corresponding to (tfinal ).
We carried on the sampling until we had around 15 000 independent samples for
the Reynolds stresses as well. An intermediate post-processing was carried out after
10 000 (tintermediate) samples. In relation to this work, no important difference was
observed between the statistics of the (tintermediate) and (tfinal ). On the other hand, the
results shown in the following correspond to (tfinal ).

In order to study the effect of porosity on the (in)homogeneity of mean velocity
and Reynolds stress components, we chose a fixed position in the spanwise direction
and calculated the inhomogeneity values according to (2.2). The results shown in
the following correspond to the spanwise position which lies in the middle of the
computational domain. We also carried out the same processing at different spanwise
positions. Since the qualitative observation was always the same, only one set of the
results is presented in the following.

Figure 10 shows the inhomogeneities of the time-averaged mean velocity component
for different porosities. The inhomogeneity level for x1/M > 20 corresponds
approximately to those of the experiments discussed in the preceding section, which
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Figure 10. Inhomogeneity of mean velocity U 1 for different porosities: (a) 53 %, (b) 64 %,
(c) 72 % and (d ) 82 %.
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Figure 11. Inhomogeneity of mean velocity U 1 for 72 % porosity with grid resolution
2400 × 400 × 400.

are ±2 %. In the vicinity of the grid (x1/M < 10), higher inhomogeneity is observed.
Far from the grid, no trace of inhomogeneity is left. Obviously, the mean velocity
component is homogeneous. This conclusion is in agreement with Corrsin (1963) in
the sense that the streamwise mean velocity is homogeneous; however, no dependence
on the porosity of the grid can be inferred from these data; even for a porosity value
as low as 53 % the mean velocity field stays homogeneous. However, as discussed
in the previous section, although not too high, the measurements revealed some
regions of inhomogeneous mean velocity fields (figure 3). This difference between the
experimental and computational results is yet to be clarified.

In the computations, we employed four rods in each direction in the computational
domain. In order to see if the number of the rods has any effect on the
(in)homogenization of the mean velocity, we extended the computational domain
in the transverse and spanwise directions by a factor of 2.5. In other words, we kept
the thickness of the rods and the mesh size the same, but instead of using four rods,
we introduced 10 rods to the domain and repeated one of the previous calculations
(72 %) with a resolution of 2400 × 400 × 400. The outcome of this extra simulation is
presented in figure 11. As can be clearly seen, the size of the computational domain
has no influence on the level of inhomogeneity of the mean velocity. As in the
previous computations, only near the grid (for x1/M < 10) are small inhomogeneities
observable.

There is another factor, however, which might have caused the difference between
the experiments and numerical results in terms of the inhomogeneity of the mean
velocity: a probable difference in the geometry of the grid used in both studies. The
grid used in the numerical simulations was perfectly uniform in all directions. On the
other hand, there might be some manufacturing imperfections in the grids employed
in the experiments. It was possible to remove this factor by another DNS, where
we used slightly modified rods. Since the extension of the transverse and spanwise
directions of the computational domain did not show any important influence, we
conducted this computation again with a resolution of 2400×160×160 for a porosity
of 72 %. The two rods in the upper half of the computational domain were kept
exactly the same as the rods employed in the previous runs. The dimensions of the
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Figure 12. Inhomogeneity of mean velocity U 1 for 72 % porosity with non-uniform grid.

lower rods were modified in order to introduce non-uniformity to the geometry. By
increasing the number of points by one in both the vertical and spanwise directions,
the lowest rod became wider in these two directions. Similarly, by decreasing the
number of points by one, both in vertical and spanwise directions, the other rod
became narrower in these two directions. The grid was positioned in the streamwise
direction in the same location as before. The symmetric rods had a thickness of
6 in lattice units. Hence, modification of its width by one leads to a difference of
around 17 % in each direction. At first glance this modification might seem to be
unrealistically high. However, the main aim of this simulation was not to be able
to reproduce the results observed in the experiments but to be able to show the
trend eventually caused by possibly non-uniform geometries. The outcome of this
simulation is shown in figure 12. The part of the field aligned with the modified
rods became greatly inhomogeneous. This study showed very clearly that the mean
velocity tends to be inhomogeneous far downstream of the grid, if non-uniform grid
structures are employed.

The discussion up to now allows us to draw the fair conclusion that the streamwise
mean velocity component is homogeneous in grid-generated turbulence, even for
a Reynolds number as low as ReM ≈ 1400, provided that one is sure about using
perfectly uniform geometries. Regardless of the value of the porosity, the mean
velocity is homogeneous; it is homogeneous even for a porosity as low as 53 %.

Of paramount importance in the experiments discussed in the previous section,
however, was the highly inhomogeneous fields of ‘Reynolds stress’ components and
their anisotropies. In order to see whether the numerical results are in agreement with
those of the experiments, the inhomogeneity of time-averaged Reynolds stress tensor
components was calculated. The inhomogeneity of u1u1 for all porosities is presented
in figure 13 and the inhomogeneity fields of u2u2 and a11 are shown in figures 14(a) and
14(b), respectively, only for a 64 % porous grid. Obviously, the Reynolds stress tensor
is tremendously inhomogeneous. The degree of inhomogeneity is of comparable order
for u1u1 and u2u2 with the higher levels observed in the experiments. The anisotropy
of the Reynolds stress tensor (a11) shows ±20 % inhomogeneity (figure 14b), which
is comparable to those of the experiments (figure 6b).
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Figure 13. Inhomogeneity of u1u1 for different porosities: (a) 53 %, (b) 64 %,
(c) 72 % and (d ) 82 %.
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Figure 14. Inhomogeneity of (a) u2u2 and (b) a11 for 64 % porosity.

Although there may be quantitative deviations from the experimental study
presented above, the overall trend is also confirmed by the numerics: Reynolds
stress components are strongly inhomogeneous. DNS for different porosities showed
that there is no trend towards increasing homogeneity either with increasing x1/M or
with increasing porosity at a fixed mesh size, M .

4. Analysis of the persisting inhomogeneity of Reynolds stresses
The experimental and numerical results of these investigations showed that the

symmetric grids produce an inhomogeneous Reynolds stress field but a homogeneous
mean velocity field, whereas the simulation with a non-uniform grid structure shows
an inhomogeneous mean velocity field in addition to the inhomogeneous stress field.
Therefore, we conclude that the inhomogeneity of Reynolds stresses is due to the
grid structure itself and the inhomogeneity in the mean velocity field is caused by
the non-uniformity of the grid structure. However, the observed inhomogeneity of
the mean velocity in experiments and simulations with uniform grid structures had a
tendency to decrease, whereas the inhomogeneity of the Reynolds stress field remained
independent of the grid structure’s uniformity. To explain this, the turbulence kinetic
energy field of one of the presented DNS computations is chosen for an analysis to
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Figure 15. (a) Kinetic energy field for 0 < x/M < 50, (b) for x/M < 10 and (c) its
inhomogeneity for the simulation made for the grid with 53 % porosity. Kinetic energy
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understand the persistence of the inhomogeneous Reynolds stress field. The kinetic
energy field and its inhomogeneity are shown in figure 15 for the flow case with a
53 % porosity.
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The turbulent kinetic energy k is governed by the following averaged equation:
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, (4.1)

which states that the time derivative of k plus the convective transport of k by the mean
motion (I) is equal to the production of turbulence by the mean velocity gradients (II)
plus the transport of the total turbulence mechanical energy by turbulent fluctuations
(III) plus the major part of the total viscous dissipation of turbulent energy (pseudo-
dissipation) (IV) plus the viscous diffusion (V). The time derivative on the left-hand
side can be neglected for any ergodic stationary turbulence field under consideration.
Thus, according to (4.1), homogenization can be augmented when there is enough
turbulence and it is transported by turbulence (III) and viscous diffusion (V). In other
words, when mean velocity gradients exist to produce turbulence via term II in (4.1),
consequently, terms (III) and (V) become active and homogenization takes place. The
contribution of each term to homogenization can be better understood when (4.1) is
made non-dimensional for stationary turbulence to read as follows:
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where

q2 = 2k, (4.3a)

ReL = k0.5L/ν, (4.3b)

and L is selected to be the length scale characterizing the large eddies, such that
the relation between the turbulence Reynolds number (ReL) and the Taylor scale
Reynolds number (Reλ) in isotropic turbulence becomes

ReL =
3

20
Reλ, (4.4)

where λg is the Taylor’s micro scale of turbulence. Hence (4.2) indicates that except the

production term, all terms scale with the turbulence intensity (q/U 1). The dissipation
and the diffusion terms are, additionally, inversely proportional to the turbulence
Reynolds number (ReL). Ertunç (2007) showed that Reλ and, consequently, ReL

decreased downstream of the grid structure despite the increase in λg . The turbulence

intensity q/U 1 drops very fast downstream of the static grids, and thereby the
contribution of the turbulent transport also drops. Due to the decrease in ReL,
the dissipation and viscous diffusion term is not expected to decrease as fast
as the turbulent transport term. Considerations of this kind show that only the
dissipation and viscous diffusion terms remain active in the far field of grid-generated
turbulent flow. It can also be deduced that only the diffusion term can homogenize
the flow before turbulence totally dissipates. It should be noted that in an ideally
homogeneous turbulence, the viscous diffusion term is identically zero.

The above considerations can be verified by analysing the turbulence kinetic energy
field in figure 15. We select three lines along the flow: line 1 crosses the centre of
the open area (x2/M = 3.05), line 3 (x2/M = 3.55) crosses the centre of the solid rod
and line 2 (x2/M = 3.3) is centred between lines 1 and 3, as shown in figure 15.



Homogeneity of turbulence generated by static-grid structures 495

Along the three lines, the turbulence activity of a jet-like flow, the shear layer and
wake region of rod are monitored, respectively. In figure 16(a–c), the development of
longitudinal and transverse mean velocities and the turbulence kinetic energy along
the selected lines are plotted. The comparison of the mean velocity curves and the
turbulence kinetic energy curves in the vicinity of the grid show clearly the generation
of turbulence by a static grid: the mean velocity gradient between the accelerated
jet-like flow and backflow at the wake of the obstacle augments the production term
(II) in (4.1). As a result, the turbulence kinetic energy reaches its maximum in the
wake of the rod (line 3) and has the lowest value always downstream of the open
area (line 1). Nevertheless, the gradients of lateral and transverse mean velocities
decrease in a very short distance. Thus, according to figure 16 and (4.1), turbulence is
no longer produced for x1/M > 4, but it is only transported, diffused and dissipated.

We have extracted each term on the right-hand side of turbulence kinetic energy
(see 4.1) along the three lines in figure 17(a–c). Along all the lines, the production is
active only in the vicinity of the grid, x1/M < 4, and the turbulent transport term is
negligibly minute over the complete domain. In the present simulations, Reλ was not
higher than 100 (see table 1), hence the generated turbulence can be accepted to be
weak (Mydlarski & Warhaft 1996) and the very low level of the turbulent transport
term can be attributed to this weakness. The dissipation term shows a gradual increase
up to x1/M ≈ 3 and a gradual decrease in the whole downstream region. The viscous
diffusion oscillates about zero up to x1/M ≈ 3. The amplitude of viscous diffusion
increases up to x1/M ≈ 2 and decreases gradually in its negative amplitude. In general,
the peak locations of dissipation and viscous diffusion lag the peak of the production
term, the dissipation peak being the last. For 5 <x1/M < 10, dissipation and viscous
diffusion are almost at the same level. At the far downstream region (x1/M > 20),
viscous diffusion becomes much higher than the dissipation, except for line 1, but with
a very low amplitude. Moreover, due to the low levels of turbulence kinetic energy
and high Reynolds number of the bulk flow, the diffusion time-scale becomes much
smaller than the convective flow. In other words, for complete homogenization via
diffusion, the time required is longer than what one can observe in the laboratory.
Hence, the reason for the inhomogeneous turbulence field in the far downstream
region can be expressed as follows: fast homogenization of the mean velocity field
causes a rapid drop in production and, consequently, the dissipation and viscous
diffusion processes, so that the generated inhomogeneity of the turbulence field does
not have the means of homogenization rather than complete dissipation.

5. Conclusions, final remarks and outlook
The present investigations on grid-generated turbulence showed that turbulence

generated by static grids remains spatially inhomogeneous even far downstream of
the grid. In both the experimental and the DNS investigations, the lateral profiles of
the u1u1 and u2u2 components showed an inhomogeneous field consisting of elongated
positive and negative regions standing at rest in space and coalescing with each other.
Measurements performed in the mesh Reynolds number range, 4000–8000, did not
reveal any dependence of inhomogeneity on the grid Reynolds number.

Furthermore, the numerical investigations revealed that turbulence remains
inhomogeneous independent of the porosity of the grid. In the simulations, it
was observed that the inhomogeneity of mean velocities decreases very fast behind
the symmetric grid, in contrast to the experimentally observed elongated strips of
mean velocity. With a simulation performed with a non-uniform grid, it was proved
that imperfections in the grid geometry can cause unexpected inhomogeneous mean
velocity distributions.
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Although the inhomogeneity of mean velocities decreases rapidly behind the
symmetric grid, the inhomogeneity of Reynolds stresses persists even afterwards.
The analysis of the transport equation for the turbulence kinetic energy, interestingly,
showed that fast decay of mean velocity gradients, i.e. decay of spatial inhomogeneity,
is the cause of the persistence of inhomogeneity far downstream of the grid. As a
result of the decreasing mean velocity gradients, the turbulence production rapidly
becomes inactive, so that the large-scale mixing process stops and the remaining
viscous diffusion term is insufficient for the turbulence to become homogeneous
before it decays completely.

The findings on the inhomogeneity of decaying grid-generated turbulence are in
accordance with those of Grant & Nisbet (1957) and show the dependence of
measured mean quantities on the relative position of the measurement location
with respect to the grid. The presented results demonstrate in detail that even far
downstream of the static grid a certain amount of inhomogeneity persists. In other
words, obeying all the rules suggested in the literature and discussed here, which were
followed in the past by many researchers, does not necessarily lead to a homogeneous
turbulence field downstream of static grids. Any kind of study which does not take
this fact into consideration can be misleading. For example, in a further study, we
aim to show the relevance of this work to the discrepancy observed in the decay
constants evaluated from grid-decay experiments. In the present work, no measures
were undertaken to generate a more homogeneous turbulence; instead, measured
and simulated data were analysed with respect to spatial inhomogeneity. However,
it is our expectation that increased mixing action about the turbulence generator
and a reduction in the anisotropy of turbulence may enhance the homogeneity of
the Reynolds stresses. Increased mixing action can be achieved, for example, by an
active grid (Mydlarski & Warhaft 1996). Nevertheless, the available homogeneity
measurements downstream of such grids are rather scarce.
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